XEV22D

ÜBERHITZUNGSREGLER FÜR SCHRITTMOTORVENTILE

--- AKTUELLE SOFTWAREVERSION 1.5 ---

1.	ALLEGEMINE WARNUNGEN	.1
2.	GENERELLE BESCHREIBUNG	.1
3.	VERKABELUNG	.1
4.	BENUTZERSCHNITTSTELLE	.2
5.	BEDIENUNG	.2
6.	PARAMETER LIST	.3
7.	HOT-KEY (PARAMETERSPEICHERKARTE)	4
8.	DISPLAY MESSAGES	4
9.	TECHNISCHE DATEN	5
10.	WERKSEINSTELLUNGEN	.5

ALLGEMEINE WARNUNGEN

1.1 VOR DER BENUTZUNG BITTE LESEN

- Diese Anleitung ist ein Teil des Produktes und soll beim Regler bleiben;
- Das Produkt darf weder außerhalb der hier erläuterten Betriebsbedingungen, noch als Sicherheitsgerät eingesetzt werden:
- Überprüfen Sie die Betriebsbereiche des Produktes;
- Die Firma Dixell Srl behält sich alle Rechte vor, das Produkt weiterzuentwickeln, indem alle Funktionen sowieso ähnlich bleiben.

SICHERHEITSHINWEISE

- Überprüfen Sie die Art der Spannungsversorgung, bevor Sie das Gerät einschalten;
- verwenden Sie das Gerät nur innerhalb seiner Einsatzbereiche der Temperatur und der
- Schützen Sie das Gerät gegen fließendes oder kondensierendes Wasser;
- Zu Ihrer Sicherheit schalten Sie alle Spannungen vor jeder Wartung aus:
- Das Gehäuse des Geräts darf nicht aufgemacht werden;
- Falls die Hardware des Geräts defekt ist, nehmen Sie kontakt mit der Firma Cool Italia GmbH auf, um die Reparatur zu organisieren:
- Beachten Sie die maximale Strombelastbarkeit jedes Relais;
- Kein am Gerät angeschlossener Fühler sollte vom Endkunden erreichbar sein;
- Halten Sie Hoch- und Niederspannungskabel voneinander getrennt;
- Falls das Gerät in elektromagnetisch stark gestörten Anwendungen eingesetzt würde, könnten Sie es mittels geschirmter Kabel und eventuell kapazitiver Filter parallel zu den größten induktiven Lasten schützen.

GENERELLE BESCHREIBUNG

Der XEV22D steuert Schrittmotorventile verschiedener Art und von verschiedenen Herstellern nach eigener Überhitzungsberechnung an, sodass der Überhitzungssollwert eingehalten wird.

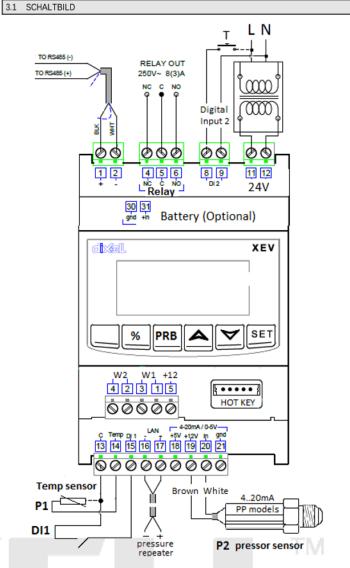
Solche aktiv geregelte Einspritzung bewährt sich vor allem im Teillastbereich und bei schnell wechselnden Lastbedingungen.

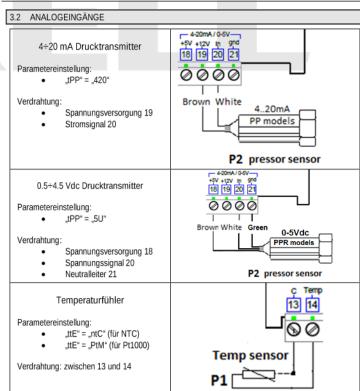
Die Überhitzungsberechnung erfolgt durch Vergleich der dem tatsächlichen Verdampfungsdruck entsprechenden Verdampfungstemperatur mit der gemessenen Gastemperatur am Verdampferaustritt, was mittels eines Drucktransmitters und eines ohmschen Temperaturfühlers, beide direkt am Überhitzungsregler angeschlossen, gemessen und intern berechnet wird. Bei diversen an derselben Saugleitung angeschlossenen Verdampfern ist es selbstverständlich

möglich, den gemeinsamen Druckwert mehrerer Überhitzungsregler durch Busleitung zur Verfügung zu stellen, um einen einzelnen Drucktransmitter pro Saugleitung anzuwenden.

Durch die integrierte RS485-Schnittstelle kann das Modul mit einem XWeb-Überwachungssystem direkt kommunizieren, obwohl bei sehr instabiler Überhitzung und ständig nachregelndem Ventil keine vernünftige Datenaufzeichnung aufgrund der normalerweise Aufzeichnungsfrequenz stattfinden kann.

VERKABELUNG

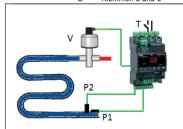

Das Modul besitzt abnehmbare Schraubklemmen für Kabel mit maximalem Ouerschnitt 2.5 mm², die entsprechend den üblichen Verordnungen dimensioniert werden sollen (Strombelastbarkeit, Isolierung,


Es wird vorgeschlagen, dass alle Signalkabel (Fühler, RS485, usw.) getrennt von denen der Steuerund Hauptstromkreise verlegt werden, um Störungen zu vermeiden.

Die maximale Strombelastbarkeit der Relais darf nicht überschritten werden,

falls die daran angeklemmten Lasten höhere Ströme aufnehmen können,

sollen entsprechende Schütze vorgesehen werden.



3.3 DIGITALEINGÄNGE

Bei nicht ständig laufenden Anwendungen (z. B. Luftkühler die nach Raumtemperatur nur bei Bedarf angefordert werden) wird die Einspritzung mittels digitaler Kontakte freigeschaltet:

- Digitaleingang 1 (potentialfrei)
 - Funktionsparameter "i1F" = "CCL"
 - o Polarität "i1P"
 - o Klemmen 13 und 15
- Digitaleingang 2 (230 Vac)
 - Funktionsparameter "i2F" = "CCL"
 - o Polarität "i2P"
 - o Klemmen 8 und 9

Anwendungsbeispiel

T = Raumthermostat

V = Schrittmotorventil

P1 = Sauggastemperaturfühler

P2 = Saugdrucktransmitter

3.4 AUTOMATISCHE ANTRIEBSKONFIGURATION

WICHTIGE HINWEISE:

- Das Ventil darf nur bei verriegelter Überhitzungsregelung bzw. bei ausgeschaltetem Regler an- und abgeschlossen werden
- Die Antriebskonfiguration (unten) soll vor der Verdrahtung des Ventils stattfinden

tEP		LSt (steps*10)	uSt (steps*10)	CPP (mA*10)	CHd (mA*10)	Sr (step/s)	tEu (bip/unip)	HSF (half/full)
1	Danfoss ETS-25/50	7	262	10	10	300	bP	FUL
2	Danfoss ETS-100	10	353	10	10	300	bP	FUL
3	Danfoss ETS- 250/400	11	381	10	10	300	bP	FUL
4	Sporlan SEI 0.5-11	0	159	16	5	200	bP	FUL
5	Sporlan SER 1.5-20	0	159	12	5	200	bP	FUL
6	Sporlan SEI 30	0	319	16	5	200	bP	FUL
7	Sporlan SER(I) G,J,K	0	250	12	5	200	bP	FUL
8	Sporlan SEI 50	0	638	16	5	200	bP	FUL
9	Sporlan SEH(I) 100	0	638	16	5	200	bP	FUL
10	Sporlan SEH(I) 175	0	638	16	5	200	bP	FUL
11	Emerson EX4-EX5- EX6	5	75	50	10	500	bP	FUL
12	Emerson EX7	10	160	75	25	500	bP	FUL
13	Emerson EX8 500	10	260	80	50	500	bP	FUL
14	Emerson EX3	4	33	0	0	50	uP	HAF

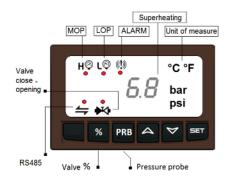
Alle in der Tabelle oben angegebenen Voreistellungen beziehen sich auf den heutigen Stand der Technik und könnten aufgrund neuer Entwicklungen der jeweiligen Ventilhersteller nicht mehr aktuell sein, sichern Sie sich deshalb, dass die tatsächlichen Antriebsparameter mit denen der beigefügten Dokumentation des tatsächlich anzusteuernden Ventils genau übereinstimmen.

3.5 MANUELLE ANTRIEBSKONFIGURATION

Falls Ihr Ventil in der Tabelle oben nicht zu finden ist, oder falls Sie den Antrieb anders konfigurieren möchten (z. B. um das Ventil zu verlangsamen), besteht die Möglichkeit, alle Parameter manuell einzugeben:

- Parameter "tEP" = 0
- Parameter "LSt" bis "HSF" manuell einstellen

3.6 XEC-ZUSATZMODUL (UNTERBRECHUNGSFREIE SPANNUNGSVERSORGUNG)


Um Schrittmotorventile beim Stromausfall zuverlässig zuzufahren, falls keine mechanischen selbstschließenden Absperrorgane auf dem Ventil selber (z. B. Emerson EX3) oder gleich vor diesem (z. B. Magnetventil in der Flüssigkeitsleitung) vorhanden sind, sind USV-Module geeignet. Das XEC-Zusatzmodul gewährleistet das sichere Schließverfahren jedes Ventils ohne in den

Das XEC-Zusatzmodul gewährleistet das sichere Schließverfahren jedes Ventils ohne in de Kältekreislauf eingreifen zu müssen.

Verdrahtung zwischen XEV und XEC				
Klemmennummer	XEV22D-Überhitzungsregler	XEC-Zusatzmodul		
USV-Pluspol (+)	31	4		
USV-Minuspol (-)	30	3		

WICHTIGER HINWEIS: XEV und XEC dürfen nicht mit demselben Trafo versorgt werden!

4. BENUTZERSCHNITTSTELLE

SET	SET-Taste Einmal drücken: den Überhitzungssollwert ansehen Gedrückt halten: den Überhitzungssollwert einstellen
^	AUF-Taste (Pfeil nach oben) Einmal drücken: ins Schnellmenü mit allen Ein- und Ausgangswerten gelangen oder Menüelemente rückwärts durchblättern
\triangle	AB-Taste (Pfeil nach unten) Einmal drücken: Menüelemente vorwärts durchblättern
%	Einmal drücken: die tatsächliche Ventilöffnung (0-100%) anzeigen
PRB	Einmal drücken: den tatsächlichen Saugdruckwert anzeigen

KEYS COMBINATIONS

∀ + ∠	^	Gedrückt halten: Tastatur sperren und entsperren.
SET + 5	\triangleleft	Gedrückt halten: ins Parametermenü gelangen.
SET + 4	^	Einmal drücken: verlässt ein Menü und führt zurück zur Hauptanzeige

4.1 LE	4.1 LEDS				
LED	MODUS	FUNKTION			
LΘ	Dauernd AN	Tiefalarm des Saugdrucks (LOP)			
н⊚	Dauernd AN	Hochalarm des Saugdrucks (MOP)			
₩.	Dauernd AUS	Ventil ganz zu			
**	Blinkend	Ventil wird gerade bewegt			
₩.	Dauernd AN	Ventil ganz auf			
=	Blinkend	Serielle Kommunikation findet gerade statt			
=	Dauernd AUS	Keine serielle Kommunikation			
(!)	Dauernd AN	Hoch- oder Tiefalarm der Überhitzung			

5. BEDIENUNG

5.1 SCHNELLMENÜ

- Die AUF-Taste bei der Hauptanzeige (Istwert der Überhitzung) einmal drücken
-) Das Schnellmenü stellt die folgenden Variablen in Echtzeit zur Verfügung
 - a. CLP Prozentuale Kühlanforderung
 - b. tP1 Istwert der Sauggastemperatur (Fühler Pb1)
 - c. PPr Istwert des Saugdrucks (Drucktransmitter Pb2)
 - d. tP2 Verdampfungstemperatur je nach Kältemittel
 - e. SH Berechnete Überhitzung
 - f. StH Überhitzungssollwert
 - g. oPP Prozentuale Ventilöffnung
 - h. d1S Zustand des potentialfreien Digitaleingangs (DI1)
 - . d2S Zustand des 230 Vac Digitaleingangs (DI2)
- Die Variablenliste wird mittels der Pfeiltasten durchgeblättert
- Die SET-Taste einmal drücken um einen Wert abzurufen
 Die Tastenkombination SET+AUF-Tasten einmal drücken um das Schnellmenü zu verlassen

5.2 DEN ÜBERHITZUNGSSOLLWERT ANSEHEN

- 1) Die SET-Taste bei der Hauptanzeige (Istwert der Überhitzung) einmal drücken
- 2) Ein erneuter Druck auf dieselbe Taste führt zurück zur Hauptanzeige

5.3 DEN ÜBERHITZUNGSSOLLWERT ÄNDERN

- 1) Die SET-Taste bei der Hauptanzeige (Istwert der Überhitzung) gedrückt halten
- Den neuen Überhitzungssollwert mittels der Pfeiltasten einstellen
- Ein erneuter Druck auf die SET-Taste speichert den neuen Sollwert, wendet diesen sofort an und führt zurück zur Hauptanzeige

5.4 INS PARAMETERMENÜ GELANGEN (ERSTE EBENE "PR1")

- Die Tastenkombination SET+AB-Tasten gedrückt halten
- Der erste Parameter in der ersten Parameterebene wird angezeigt

Installations- und Bedienungsanweisung

INS ERWEITERTE PARAMETERMENÜ GELANGEN (ZWEITE EBENE "PR2")

- Die erste Parameterebene ("Pr1") erreichen
- Nach dem Label "Pr2" am Ende der Parameterliste suchen
- 3) Die SET-Taste einmal drücken und den Code 321 eingeben

5.6 EINEN PARAMETER EINSTELLEN

- Die entsprechende Parameterebene erreichen und den gewünschten Parameter finden
- Die SET-Taste einmal drücken um den aktuellen Wert anzusehen
- Einen neuen Wert mittels der Pfeiltasten einstellen
- Die SET-Taste erneut einmal drücken um den neuen Parameterwert zu speichern

6. PARAMETERLISTE

FtY

REGELUNG Kältemittel: erforderliche Einstellung um die korrekte Verdampfungstemperatur

umzurechnen. WICHTIGER HINWEIS: bei unpassender Kältemitteleinstellung wird einen

LABEL	KÄLTEMITTEL	TEMPERATURBEREICH
R22	r22	-50÷60 °C
134	r134A	-70÷60 °C
404	r404A	-50÷60 °C
47A	r407A	-50÷60 °C
410	r410	-50÷60 °C
507	r507	-70÷60 °C
47C	r407C	-50÷60 °C
47F	r407F	-50÷60 °C
290	r290 (Propan)	-50÷60 °C
CO2	r744 (Kohlendioxid)	-50÷60 °C
450	r450A	-45÷60 °C
513	r513	-45÷60 °C
448	r448A	-45÷60 °C
449	r449A	-45÷60 °C
Reaktionszeit (1	÷100s: 0 = automatisc	h)

rEt

Mindestintervall zwischen zwei Aktualisierungen der Ventilposition, um stark pendelnde Überhitzungen bei Bedarf, z. B. wegen überdimensionierter Drosselorgane, durch verzögerte Nachregelung zu stabilisieren

- rEt = 0 (automatisch) - in Abhängigkeit von der Trägheit des Systems wird die optimale Reaktionszeit automatisch berechnet
- (stetig) die Ventilöffnung wird ohne Verzögerungen stetig aktualisiert (Beispiel) die Ventilöffnung wird jede 30 Sekunden aktualisiert rEt = 30

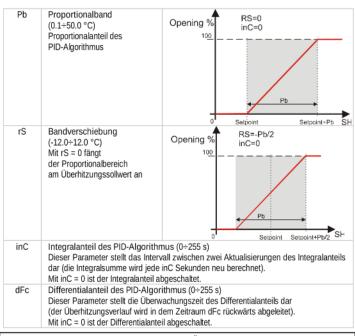
Notfallöffnung bei Fühlerfehler (0÷100%) PEo

Falls die Überhitzung wegen eines fehlenden bzw. nicht mehr funktionsfähigen Fühlers nicht berechnet werden kann, stellt der Regler das Ventil auf diesen Öffnungsgrad. Dieser Zustand wird durch den Parameter PEd zeitlich begrenzt.

PEd Zeitliche Begrenzung der Notfallöffnung (0÷239s, On = unbegrenzt) Nach dieser Betriebszeit im Notfallmodus fährt das Ventil zu und bleibt geschlossen. Bei Einstellung unbegrenzter Notfallöffnung wird der Notfallzustand konstant gehalten. Schrittmotortyp: erforderliche Einstellung für die Ansteuerung des Schrittmotors tEU

tEU = UP – unipolarer Schrittmotor tEU = bP – bipolarer Schrittmotor

WICHTIGER HINWEIS: dieser Parameter darf nicht bei angeschlossenem Ventil eingestellt werden!


Ventiltyp: erforderliche Einstellung für die Ansteuerung des Schrittmotors, die kann entweder durch Auswahl eines voreingestellten Ventils oder manuell (tEP = 0) erfolgen. WICHTIGER HINWEIS: bei unpassender Einstellung der Antriebsparameter können die Gefahren von Schrittverlusten, unvollständigem Schließen und

		exzessiver W			n!	i, unvoii	starraigen	T COMMENS	ari uriu
		VENTIL	LSt (steps*10)	USt (steps*10)	CPP (mA*10)	CHd (mA*10)	Sr (step/s)	tEu (bip/unip)	HSF (halb/voll)
	0			nuelle Einst				(biprariip)	(Halbi Voll)
	1	Danfoss ETS-25/50	7	262	10	10	300	bP	FUL
	2	Danfoss ETS-100	10	353	10	10	300	bP	FUL
	3	Danfoss ETS- 250/400	11	381	10	10	300	bP	FUL
	4	Sporlan SEI 0.5-11	0	159	16	5	200	bP	FUL
	5	Sporlan SER 1.5-20	0	159	12	5	200	bP	FUL
	6	Sporlan SEI 30	0	319	16	5	200	bP	FUL
	7	Sporlan SER(I) G,J,K	0	250	12	5	200	bP	FUL
	8	Sporlan SEI 50	0	638	16	5	200	bP	FUL
	9	Sporlan SEH(I) 100	0	638	16	5	200	bP	FUL
	10	Sporlan SEH(I) 175	0	638	16	5	200	bP	FUL
	11	Emerson EX4-EX5- EX6	5	75	50	10	500	bP	FUL
	12	Emerson EX7	10	160	75	25	500	bP	FUL
	13	Emerson EX8 500	10	260	80	50	500	bP	FUL
	14	Emerson EX3	4	33	0	0	50	UP	HAF
HFS	5		ung AF – Halbsc UL – Vollsch						
LSt		Schrittanzahl Das ist die Scl						stattfindet.	
USt	5	Schrittanzahl Das ist die Scl	bei Vollöffr	nung (LSt÷8	00, Auflös	ung 10 Sc	:hritte)		
ESt	E	Extraschritte Bei komplette Endposition vo	beim Zufah m Zufahren	ren (0÷255, des Ventils	Auflösung , können	10 Schrit Extraschr	te) itte geger	n die mech	anische
Sr	3	Schrittfreque Je nach Auf Schrittzahl pro	nz (10÷600 bau des S	Hz) chrittmotors	sind ma	ximale S	chrittfrequ	enzen (ert	ragbare
CPP	L	_aufstrom (0- Sollwert des V	÷100, Auflös	ung 10 mA)					oren
CHd	9	Haltestrom (0 Sollwert des V Nach vier Min	÷100, Auflö: Vicklungsstro uten ohne B	sung 10 mA) oms während ewegungen	d des Stills wird das \	tands bip	olarer Sch	nrittmotore strom verso	en. orgt, der
oPE	F	normalerweise viel kleiner als der Laufstrom ist um die Energieverluste zu minimieren. Feste Startöffnung (0+100%) Dieser feste Öffnungsgrad kann am Anfang der Kühlanforderung bzw. nach einer Abtauung zeitbegrenzt verwendet werden, um den Verdampfer schnell abzukühlen. Die Dauer dieser ungesteuerten Öffnungsphase wird vom Parameter SFd bestimmt.							
SFd	[Dauer der fes Während der S	ten Startöff	nung (0:0÷	42:00 Min:	s, Auflösu	ng 10 s)		
dty	PWM-artige Lauf- und Pausezeiten (2÷10, Auflösung 0.1 s) Um den Ventilantrieb träger einzustellen, können Laufzeiten und Laufpausen quasi PWM-artig abwechselnd eingehalten werden. Laufzeit: dty / 10 [s] Pausezeit: (1 – Laufzeit) [s] Mit dty = 10 werden die Ventilläufe nicht unterbrochen (Pausezeit = 0 s). Bei bipolaren Antrieben wird die Ständerspule während der Pausezeiten mit dem Haltestrom eingespeist, was vor allem bei größeren Ventilen zu einer messbaren Verringerung der Wärmeverluste führen kann.								
MnF	N	Maximaler Öf Während der i	fnungsgrad	(0÷100%)		rameter d	ie Öffnung	sgrenze da	r.
FoP	5	Handöffnung Sobald FoP a ein und aller a Mit FoP = nU	(0÷100%, n uf eine Proz nderen Einfl	U = automa ent eingest üsse auf die	tischer Bet ellt wird, s ses sind o	rieb) stellt sich (hne Zeitbe	das Ventil	dementspr	

PID-PARAMETER

AMS	Selbstanpassende Überhitzungsregelung – Die Ventilreaktionen können entweder manuell konfiguriert werden und somit statisch erfolgen, oder vom Regelalgorithmus selber an die tatsächlichen Betriebskonditionen angepasst werden. AMS = no – statische Regelung nach eingestellten Parametern AMS = yES – dynamische Regelung nach selbstanpassendem PID-Algorithmus
Atu	Selbstsuche nach dem minimalen stabilen Überhitzungssollwert Atu = no – Der eingestellte Überhitzungssollwert wird eingehalten Atu = yES – Von dem eingestellten Überhitzungssollwert ausgehend, wird nach der tiefsten stabilen Einstellung automatisch gesucht um die Nutzung der Verdampferfläche und somit die Kühlleistung maximal zu halten Anmerkung: aus Sicherheitsgründen wird der dynamische Sollwert sowieso 2 K vor

der Tiefalarmgrenze limitiert (SH ≥ LSH + 2.0 K).

	ANALOGEINGÄNGE				
tPP	Saugdrucktransmitter tPP = 420 – Druckmessung durch 4-20 mA Signal tPP = 5V – Druckmessung durch 0-5 Vdc Signal tPP = LAn – Der Saugdruckwert wird von einem anderen XEV22D durch die dafür spezifische Busleitung zur Verfügung gestellt (Klemmen 16-17)				
LPP	Druckwertweiterleitung LPP = n – Keine Weiterleitung des lokal gemessenen Drucks LPP = Y – Der vom Regler lokal gemessene Druck wird vom Regler durch die dafür spezifische Busleitung weitergeleitet (Klemmen 16-17)				
PA4	Saugdruckwert am Messbereichsanfang (4 mA oder 0 Vdc) Relativer oder absoluter Druckwert je nach Einstellung des Parameters PrM				
P20	Saugdruckwert am Messbereichsende (20 mA oder 5 Vdc) Relativer oder absoluter Druckwert je nach Einstellung des Parameters PrM				
oPr	Kalibrierung des Drucktransmitters (-12.0÷12.0 bar)				
ttE	Sauggastemperaturfühler ttE = PtM – Pt1000-Fühler ttE = ntC – Standard NTC-Fühler (10 kΩ bei 25 °C) ttE = CtC – Sondervariante des NTC-Fühlers für den amerikanischen Markt				
otE	Kalibrierung des Sauggastemperaturfühlers (-12.0÷12.0 °C)				

	DIGITALEINGÄNGE
i1P	Polarität des ersten Digitaleingangs (Di1 - potentialfrei) i1P = CL – Schließer (aktiv gebrückt) i1P = OP – Öffner (aktiv geöffnet)
i1F	Funktion des ersten Digitaleingangs (Di1 - potentialfrei) i1F = CCL – Kühlanforderung (Einspritzungsfreigabe) i1F = rL – Externe Alarmmeldung
d1d	Alarmverzögerung des ersten Digitaleingangs (0÷255 Min) Wenn der erste Digitaleingang als potentialfreier Alarmkontakt verwendet wird, stellt dieser Parameter dessen Alarmverzögerung dar.
i2P	Polarität des zweiten Digitaleingangs (Di2 – 230 Vac) i1P = CL – Schließer (aktiv bei anliegender Spannung) i1P = OP – Öffner (aktiv spannungslos)
i2F	Funktion des zweiten Digitaleingangs (Di2 – 230 Vac) i1F = CCL – Kühlanforderung (Einspritzungsfreigabe) i1F = rL – Externe Alarmmeldung
d2d	Alarmverzögerung des zweiten Digitaleingangs (0÷255 Min) Wenn der zweite Digitaleingang als 230 Vac Alarmkontakt verwendet wird, stellt dieser Parameter dessen Alarmverzögerung dar.

	ALARME
dAo	Alarmverzögerung nach Einspritzungsfreigabe (0:0÷42:00 Min:s, Auflösung 10 s) Nach der durch einen Digitaleingang erteilten Einspritzungsfreigabe können alle Druck-und Überhitzungsalarme bis auf LSH (Tiefalarm der Überhitzung) für eine gewisse Zeit unterdrückt werden, sodass sich die Verdampfung stabilisiert und keine temporären Übergangszustände mit echten Alarmen verwechselt werden.
tdA	Funktion des Alarmrelais tdA = ALL – Meldung aller Alarme tdA = SH – Meldung der Überhitzungsalarme tdA = PrE – Meldung der Druckalarme tdA = di – Meldung externer Alarme mithilfe eines Digitaleingangs
bon	Freigabe des Alarmsummers bon = no – Der Alarmsummer ist verriegelt bon = yES – Der Alarmsummer piept bei vorhandenen Alarmen
LPL	Mindestdruck für die Überhitzungssteuerung (PA4÷P20 bar) Durch diesen Parameter kann der Saugdruck nach unten indirekt begrenzt werden, sodass der Verdampfer bei geringer Ventilöffnung nicht Richtung Vakuum fährt. Falls der tatsächliche Saugdruck tiefer als LPL ist, wird trotzdem der Wert von LPL für die Überhitzungsberechnung verwendet: somit bleibt das Ventil stabiler und dadurch können kurzzeitige Schwankungen nach unten des Saugdrucks überbrückt werden.
MoP	Hochdruckalarmgrenze (LoP÷P20 bar) Steigt der Saugdruck zu viel an, wird diese Meldung ohne Verzögerungen ausgelöst.

LoP	Niederdruckalarmgrenze (PA4÷MoP bar) Sinkt der Saugdruck zu viel ab, wird diese Meldung ohne Verzögerungen ausgelöst.
PHY	Rückstellhysterese beider Saugdruckalarme (0.1÷5.0 bar)
dML	Ventilreaktion auf Saugdruckstörungen (0÷100%) Bei einem Hochdruckalarm (MoP) fährt das Ventil jede Sekunde um dML-Prozent zu. Bei einem Niederdruckalarm (LoP) fährt das Ventil jede Sekunde um dML-Prozent auf.
MSH	Hochalarm der Überhitzung (LSH÷80.0 °C)
LSH	Tiefalarm der Überhitzung (0.0÷MSH °C)
SHY	Rückstellhysterese beider Überhitzungsalarme (0.0÷25.5 °C)
SHd	Alarmverzögerung beider Überhitzungsalarme (0÷255 s)

	(* ====)
	ANZEIGE
tdS	Zeitmittelwert des Saugdrucks (0÷240 s) Zur Überhitzungsberechnung wird ein Zeitmittelwert des Saugdrucks verwendet, der über den Zeitraum tdS errechnet wird. Vorgeschlagene Werte: • 5 ≤ tdS ≤ 10 für einzelne Kältemaschinen oder Verflüssigungssätze • 1 ≤ tdS ≤ 6 für Verbundanlagen Die Einstellung soll gegebenenfalls der Trägheit der jeweiligen Anwendungen experimentell angepasst werden.
tdt	Zeitmittelwert der Sauggastemperatur (0÷240 s) Zur Überhitzungsberechnung wird ein Zeitmittelwert der Sauggastemperatur verwendet, der über den Zeitraum tdt errechnet wird (üblicherweise bleibt dieses Intervall sehr gering, z. B. 1÷3 s, da die Temperaturmessung sowieso relativ träge ist). Die Einstellung soll gegebenenfalls der Trägheit der jeweiligen Anwendungen experimentell angepasst werden.
Lod	Anzeige am Display Lod = SH – Berechnete Überhitzung Lod = PEr – Prozentuale Ventilöffnung Lod = P1 – Istwert der Sauggastemperatur Lod = P2 – Istwert des Saugdrucks
CF	Temperaturmaßeinheit CF = C – Celsius CF = F – Fahrenheit
PMU	Druckmaßeinheit PMU = bAr – bar PMU = PSi – PSI
rES	Temperaturauflösung (nur °C) rES = $dE - 0.1 K$ rES = $in - 1 K$
PrM	Druckmess- und Anzeigemodus PrM = rEL – Relative Druck (Überdruck) PrM = AbS – Absoluter Druck
CLP	Prozentuale Kühlanforderung (nur lesbar)
tP1	Istwert der Sauggastemperatur (nur lesbar)
PPr	Istwert des Saugdrucks (nur lesbar)
tP2	Berechnete Verdampfungstemperatur (nur lesbar)
SH	Berechnete Überhitzung (nur lesbar)
STH	Überhitzungssollwert (nur lesbar)
oPP	Prozentuale Ventilöffnung (nur lesbar)
d1S	Zustand des ersten potentialfreien Digitaleingangs (nur lesbar)
d2S Adr	Zustand des zweiten 230 Vac Digitaleingangs (nur lesbar) Serielle Adresse (0÷255) Identifiziert das Gerät in einem RS458-Netz mit ModBus-RTU-Protokoll, zum Beispiel zum Anbindung an ein XWeb-Überwachungssystem.
Mod	Protokollart Mod = AdU – Sondervariante des ModBus-RTU-Protokolls (siehe unten) Mod = Std – Standard ModBus-RTU-Protokoll
	Die Besonderheit der Sondervariante besteht darin, dass der XEV22D dank Ihr zusammen mit einem Kühlstellenregler als einziger Datenpunkt gesehen werden kann, wodurch dieselbe Adresse für beide verwendet wird. Diese Sonderanwendung muss je nach Kühlstellenregler von Dixell freigegeben bzw. eingerichtet werden.
Ptb	Version der Werkseinstellungen (nur lesbar)
rEL	Softwareversion (nur lesbar)
Pr2	Verknüpfung zur zweiten Parameterebene

HOT-KEY (PARAMETERSPEICHERKARTE)

PARAMETER EINES REGLERS SPEICHERN

- 1.
- Gewünschte Einstellungen im Regler manuell eingeben HOT-KEY ins laufende Gerät einstecken und den Pfeil nach oben drücken
- Das Display zeigt "UPL" während der Datenübertragung an Am Ende des Verfahrens zeigt das Display entweder "End" (Datenübertragung erfolgreich) oder "Err" (Datenübertragung gescheitert)

7.2 PARAMETER AUF EINEN REGLER HERUNTERLADEN

- Regler ausschalten bzw. in OFF-Modus setzen 1.
- HOT-KEY ins Gerät einstecken und den Regler einschalten
- Das Display zeigt "dOL" während der Datenübertragung an
- Am Ende des Verfahrens zeigt das Display entweder "End" (Datenübertragung erfolgreich) oder "Err" (Datenübertragung gescheitert)

LABEL	ALARMURSACHE	AUSWIRKUNG
"PMP"	Keine Einspritzungsfreigabe	Das Ventil bleibt zu
"PF"	Einspritzung verriegelt wegen Fühlerfehler nach PEd	Das Ventil bleibt zu
"P1"	Fühlerfehler Pb1 (Sauggastemperatur) während PEd	Notöffnung PEo
"P2"	Fühlerfehler Pb2 (Saugdruck) während PEd	Notöffnung PEo
"HSH"	Hochalarm der Überhitzung	Nur Meldung
"LSH"	Tiefalarm der Überhitzung	Das Ventil bleibt zu
"LPL"	Mindestdruck unterschritten	Gemäß LPL
"MoP"	Tiefalarm des Saugdrucks	Ventilreaktion nach dML

Installations- und Bedienungsanweisung

LABEL	ALARMURSACHE	AUSWIRKUNG
"LoP"	Hochalarm des Saugdrucks	Ventilreaktion nach dML
"StF"	Startöffnung	Gemäß SFd
"EE"	Interner Fehler auf der Platine	Nur Meldung

9. TECHNISCHE DATEN

Gehäuse: selbstverlöschender Kunststoff

Abmessungen: Breite 70 mm, Höhe 135 mm, Tiefe 60 mm

Montage: Auf Hutschiene, 4 DIN-Module

Schutzart: IP20

Klemmen: abnehmbare Schraubklemmen. Kabelguerschnitt ≤ 2.5 mm²

Spannungsversorgung: 24 Vac/dc ±10% Maximale Leistungsaufnahme: 20 VA Anzeige: LED-Display, 4 Ziffern

Analogeingänge: 1x NTC/Pt1000, 1x 4-20mA/0-5Vdc

Genauigkeit der Temperaturfühler bei 25 °C: ±0.7°C ±1 Ziffernschritt Genauigkeit der 4-20mA Eingänge: besser als 0.5% vom Messbereichsende Genauigkeit der 0-5Vdc Eingänge: besser als 0.5% vom Messbereichsende Messbereiche der ohmschen Temperaturfühler:

NTC = -40÷110 °C PT1000 = -50÷110 °C

Digitaleingänge: 1x spannungsfrei, 1x 230 Vac

Schrittmotorantrieb: unipolar (maximale Stromabgabe 0.33 Adc bei 12 Vdc) und bipolar (maximale Stromabgabe 0.9 Adc bei 12 Vdc)

Datenspeicher: nichtflüchtig (EEPROM)

Verschmutzungsgrad: 2 (gelegentliche Leitfähigkeit durch Kondensation) Softwaresicherheitsklasse: A (keine Schädigung der Gesundheit möglich)

Betriebstemperaturbereich: 0÷55 °C Lagerungstemperaturbereich: -25÷60 °C Feuchtigkeitsbereich: 20÷85% (ohne Kondensation)

LABEL	BESCHREIBUNG	EINSTELLBEREICH	AB	EBEN
LABEL	BESCHREIBUNG	EINSTELLBEREICH	WERK	EBEN
	REGEL			
		R22; 134; 404; 47A; 410;		
FtY	Kältemittel	507; 47C; 47F; 290;	404	Pr2
		CO2; 450; 513; 448; 449		
rEt	Reaktionszeit	1÷100 s;		
121	reaktionszen	0 = automatisch		
PEo	Notfallöffnung bei Fühlerfehler	0÷100 %	1	Pr2
PEd	Zeitliche Begrenzung der	0÷239 s,	50	Pr2
PEU	Notfallöffnung	On = unbegrenzt	30	FIZ
tEU	Schrittmotortyp	uP; bP	On	Pr2
tEP	Ventiltyp	0÷14	bP	Pr2
HFS	Schrittauflösung	HAF; FUL	0	Pr2
LSt	Schrittanzahl bei Mindestöffnung	0÷USt (*10)	FUL	Pr2
USt	Schrittanzahl bei Vollöffnung	LSt÷800 (*10)	0	Pr2
ESt	Extraschritte beim Zufahren	0÷255 (*10)	0	Pr2
Sr	Schrittfrequenz	10÷600 Hz	0	Pr2
CPP	Laufstrom	0÷100 (*10 mA)	10	Pr2
CHd	Haltestrom	0÷100 (*10 mA)	0	Pr2
oPE	Feste Startöffnung	0 to 100 %	0	Pr2
SFd	Dauer der festen Startöffnung	0:0÷42:00 Min:s, (*10 s)	8.0	Pr2
dty	PWM-artige Lauf- und Pausezeiten	2÷10, (*0.1 s)	0.0	112
MnF	Maximaler Öffnungsgrad	0÷100 %	100	Pr2
IVIIII	waximaici Omidngsgrad	0÷100 %:	100	112
FoP	Handöffnung	nU = Handmodus aus	nu	Pr2
		110 - Handinouds aus		
	PID-PARA	METER		
4440	Selbstanpassende	No. 50		D::0
AMS	Überhitzungsregelung	No; yES	n	Pr2
A.T. I	Selbstsuche nach dem minimalen	N50		D-0
ATU	stabilen Überhitzungssollwert	No; yES	n	Pr2
Pb	Proportionalband	0.1÷50.0 °C	12	Pr2
rS	Bandverschiebung	-12.0÷12.0 °C	0.0	Pr2
inC	Integralanteil des PID-Algorithmus	0÷255 s	180	Pr2
450	Differentialanteil des	0.255 -	_	Dra
dFC	PID-Algorithmus	0÷255 s	2	Pr2
4DD	ANALOGEII		400	D-0
tPP	Saugdrucktransmitter	420; 5V; LAn	420	Pr2
LPP	Druckwertweiterleitung	no; yES	n	Pr2
PA4	Saugdruckwert am	-1.0÷P20 bar	-0.5	Pr2
	Messbereichsanfang Saugdruckwert am			
P20	Messbereichsende	PA4÷50.0 bar	11	Pr2
oPr	Kalibrierung des Drucktransmitters	-12.0÷12.0 bar	0.0	Pr2
ttE	0		PtM	Pr2
uc.	Sauggastemperaturfühler Kalibrierung des	PtM; ntC; CtC	PUVI	PIZ
otE	Sauggastemperaturfühlers	-12.0÷12.0 °C	0.0	Pr2
	DIGITALEIN	IGÄNGE		
i1P	Polarität des ersten Digitaleingangs	CL; oP	cL	Pr2
i1F	Funktion des ersten Digitaleingangs	CCL; rL	CCL	Pr2
	Alarmverzögerung des ersten			
d1d	Digitaleingangs	0÷255 min	0	Pr2
i2P	Polarität des zweiten Digitaleingangs	CL; oP	cL	Pr2
	Funktion des zweiten			
i2F	Digitaleingangs	CCL; rL	CCL	Pr2
40-1	Alarmverzögerung des zweiten	0.055		B
d2d	Digitaleingangs	0÷255 min	0	Pr2

	ALAR	ME		
	Alarmverzögerung nach			
dAo	Einspritzungsfreigabe	0:0÷42:00 Min:s, (*10 s)	10.0	Pr2
tdA	Funktion des Alarmrelais	ALL; SH; PrE; Di	ALL	Pr2
bon	Freigabe des Alarmsummers	no; yES	no	Pr2
LPL	Mindestdruck für die Überhitzungssteuerung	PA4÷P20 bar	-0.5	Pr2
MoP	Hochdruckalarmgrenze	LoP÷P20 bar	11.0	Pr2
LoP	Niederdruckalarmgrenze	PA4÷MoP bar	-0.5	Pr2
PHy	Rückstellhysterese beider Saugdruckalarme	0.1÷5.0 bar	0.2	Pr2
dML	Ventilreaktion auf Saugdruckstörungen	0÷100 %	5	Pr2
MSH	Hochalarm der Überhitzung	LSH÷80.0 °C	80.0	Pr2
LSH	Tiefalarm der Überhitzung	0.0÷MSH °C	2.5	Pr2
SHY	Rückstellhysterese beider Überhitzungsalarme	0.1÷25.5 °C	0.5	Pr2
SHd	Alarmverzögerung beider Überhitzungsalarme	0÷255 s	30	Pr2
	ANZE	IGE		
tdS	Zeitmittelwert des Saugdrucks	0÷240 s	5	Pr2
	Zeitmittelwert des Saugurdeks	0-240 5	- 3	FIZ
tdt	Sauggastemperatur	0÷240 s	3	Pr2
Lod	Anzeige am Display	SH; PEr; P1; P2	SH	Pr2
CF	Temperaturmaßeinheit	°C; °F	°C	Pr2
PMu	Druckmaßeinheit	bAr; PSi	bAr	Pr2
rES	Temperaturauflösung	dE; in	dE	Pr2
PrM	Druckmess- und Anzeigemodus	rEL; AbS	rEL	Pr2
CLP	Prozentuale Kühlanforderung	(nur lesbar)		Pr1
tP1	Istwert der Sauggastemperatur	(nur lesbar)		Pr1
PPr	Istwert des Saugdrucks	(nur lesbar)		Pr1
tP2	Berechnete Verdampfungstemperatur	(nur lesbar)		Pr1
SH	Berechnete Überhitzung	(nur lesbar)		Pr1
STH	Überhitzungssollwert	(nur lesbar)		Pr1
oPP	Prozentuale Ventilöffnung	(nur lesbar)		Pr1
d1S	Zustand des ersten potentialfreien Digitaleingangs	(nur lesbar)		Pr1
d2S	Zustand des zweiten 230 Vac Digitaleingangs	(nur lesbar)		Pr1
Adr	Serielle Adresse	1÷247	1	Pr2
Mod	Protokollart	Std; AdU	Std	Pr2
Ptb	Version der Werkseinstellungen		-	Pr2
rEL	Softwareversion		1.5	Pr2
Pr2	Verknüpfung zur zweiten Parameterebene		-	Pr1

HAFTUNG & URHEBERRECHT

Es handelt sich um eine Übersetzung des Handbuchs der Firma Dixell S.p.A., I-32010 Pieve d'Alpago (BL) ITALY, Z.I. Via Les landeit sur un eine Gereitzung des Handunders der Inna bleiet is "A., Rezut or Hartung auf Vollständigkeit und Richtigkeit wird nicht übernommen, auch können wir keine Haftung für Fehler oder Schäden, die durch Nutzung des Handbuchs oder der Software (XWEB-Systeme, Progtool, Hotkey....) resultieren übernehmen. Es gelten ferner unsere AGB's.

Urheberrecht

Alle Rechte an diesem Handbuch liegen bei der Firma CI GmbH CONTROL INSTRUMENTS / Fellbach. Das vorliegende Handbuch darf weder ganz noch auszugsweise ohne die schriftliche Genehmigung der Firma CI GmbH CONTROL INSTRUMENTS reproduziert, übertragen, umgeschrieben oder in eine andere Sprache übersetzt werden. Das Handbuch wurde mit Sorgfalt erstellt und alle erdenklichen Massnahmen getroffen, um die Richtigkeit der vorliegenden Produktdokumention zu gewährleisten. Da jedoch ständig Verbesserungen an der Hard- und Software vorgenommen werden, behält sich die Firma CI GmbH CONTROL INSTRUMENTS das Recht vor, jederzeit und ohne Vorankündigung Änderungen und Korrekturen vorzunehmen

CI GmbH CONTROL INSTRUMENTS, Schmidener Weg 13, D -70736 Fellbach Tel.: +49(0)711/65883-15, Fax.: +49(0)711/653602 Mail: info@dixell.de, www.dixell.de